Nociones de electricidad arco eléctrico soldadura

El circuito eléctrico

Para comprender mejor la aplicación del arco eléctrico a la soldadura, es necesario conocer ciertos principios fundamentales relacionados con la electricidad.

El circuito de soldadura por arco eléctrico
La corriente eléctrica es un flujo de electrones que circula por un conductor en un circuito cerrado,denominado circuito eléctrico.
La corriente fluye a partir del borne de la máquina de soldar, donde se fija el cable del electrodo , y termina en el borne de la máquina, donde se fija el cable de tierra o de trabajo. A partir del punto la corriente fluye al porta-electrodo y por éste al electrodo; por el extremo del electrodo salta la electricidad a la pieza formando el arco eléctrico; sigue fluyendo la electricidad por el metal base al cable de tierra y vuelve a la máquina. El circuito está establecido sólo cuando el arco se encuentra encendido.

Voltaje y amperaje.
El agua circula a lo largo de un tubo, si existe una presión que lo impulse; en la misma forma, la corriente eléctrica fluye o circula a través de un circuito, si existe una «presión», que impulse el flujo de electrones dentro de un conductor (máquina en funcionamiento). Esta “presión”, que induce una corriente eléctrica, se llama diferencia de potencial,tensión o voltaje. El voltaje se expresa en voltios y se mide con el  voltímetro; algunas máquinas de soldar poseen voltímetro y un regulador de voltaje. La cantidad de agua, que pasa por un tubo, se mide por una magnitud en una unidad de tiempo(metros cúbicos por segundo).En igual forma se utiliza,para expresar la magnitud de corriente eléctrica, la cantidad de electricidad por segundo. La unidad utilizada es el Columbio por Segundo, lo que se expresa en Amperios, y se mide con un instrumento llamado amperímetro.
Todas las máquinas de soldar cuentan con reguladores, que permiten variar el amperaje o intensidad de corriente eléctrica necesaria para soldar.

Clases de corriente eléctrica:
Corriente alterna (AC).- El flujo de corriente varía de una dirección a la opuesta.  Este cambio de dirección se efectúa 100 a 120 veces por segundo. El tiempo comprendido entre los cambios de dirección positiva o negativa se conoce con los nombres de ciclo o período(50 a 60 ciclos). Esta corriente es transportada por redes eléctricas monofásicas que utilizan 2 cables, o bien es conducida por redes eléctricas trifásicas, que utilizan 3 cables de transportación. Las máquinas de soldar pueden utilizar tanto la corriente monofásica como la trifásica.

Corriente continua (CC).- El flujo de corriente conserva siempre una misma dirección: del polo negativo al positivo.
En la corriente continua es importante saber la dirección del flujo de corriente. La dirección del flujo de corriente en el circuito de soldadura es expresada en término de POLARIDAD. Si el cable del porta-electrodo es conectado al polo negativo (-) de la fuente de poder y el cable de tierra al polo positivo (+), el circuito es denominado POLARIDAD DIRECTA o NORMAL.

Cuando el cable del porta-electrodo es conectado al polo positivo (+) de la fuente de poder y el cable de tierra al polo negativo, el circuito es denominado POLARIDAD INVERSA o INDIRECTA.
En algunas máquinas no es necesario cambiar los cables en los bornes, porque poseen una manija o llave de conmutación que permite cambiar de polaridad con facilidad.

Aleaciones de aluminio para colada

Son aquellas aleaciones que se utilizan en fundición de piezas obtenidas mediante colada en moldes de arena (colada en arena), en moldes de acero (colada en coquilla) y mediante inyección.

Las aleaciones de aluminio de colada son propensas a presentar porosidad gaseosa a lo largo del metal solidificado. Este hecho se debe a la gran capacidad que tiene el caldo metálico en absorber hidrógeno de la atmósfera o vapor de agua que pueda existir en el horno. Generalmente, para evitar esta porosidad se utilizan fundentes limpiadores como el BCl3 (tricloruro de boro) o mediante la inyección de nitrógeno en el caldo metálico.

Las aleaciones de aluminio en estado líquido reaccionan con gran facilidad con el oxígeno de la atmósfera formando una capa de óxido en su superficie. Esta capa protege al metal líquido interior de la oxidación.

La familia de aleaciones seleccionadas para la fabricación de la estructura cerrada son las aleaciones AlSi aleadas también con Mg y son las que a continuación se tratan haciendo hincapié en sus propiedades de colabilidad, resistencia mecánica y resistencia a la corrosión. Para la observación de las características de otras aleaciones utilizadas habitualmente como son las AlCu, AlCuS, AlMn véase Anexo A.4.

Aleaciones AlSi. Las aleaciones de aluminio y silicio se utilizan cada vez más por sus excelentes propiedades de moldeo, buena soldabilidad, buena resistencia al desgaste y buena resistencia a la corrosión, incluso en ambiente marinos.

La adición de silicio mejora notablemente la fluidez de la aleación durante la colada. Esto se debe a que el silicio tiene un retículo tipo diamante, no denso, donde cada átomo de silicio en estado sólido ocupa un espacio mucho mayor que en el estado líquido, por lo que al solidificar, la contracción es inferior a la de otras aleaciones y metales. En general, las aleaciones AlSi son las más dúctiles y resistentes al choque que las aleaciones AlCu.

El sistema binario AlSi forma un eutéctico a una temperatura de 577°C y a una composición del 11.7% de Si, donde la microestructura está formada por una matriz de fase a y una dispersión de fase p o silicio.

Al igual que las aleaciones anteriores, la solubilidad del silicio en la matriz de aluminio es máxima a la temperatura del eutéctico. En condiciones de equilibrio la solución sólida de aluminio o fase a tiene un contenido en silicio del 1.3% a 550°C y baja hasta el 0.05% al 0.008% a la temperatura de 250°C

En estas aleaciones, el silicio existente puede aparecer en dos formas. A partir de la precipitación de la solución sólida a o bien a partir de una forma directa durante el proceso de solidificación.

Desde el punto de vista cristalográfico ambos son equivalentes, pero difieren en la forma y distribución. En los procesos de colada, las aleaciones AlSi no suelen alcanzar estructuras totalmente en equilibrio y suele aparecer silicio libre en los lingotes.

Existen otros aleante como el Na y el Fe que se añaden al aluminio fundido para producir la reacción conocida como modificación. La adición de Na evita la cristalización del silicio desplazando el punto eutèctico hacia la derecha (14% de Si) y disminuyendo la temperatura del eutèctico.

Desde el punto de vista microestructural, el Na hace que el silicio cristalice de una forma dispersa y uniforme en vez de finas placas alargadas. La distribución del silicio en pequeños precipitados favorece las propiedades mecánicas de resistencia.

Por ejemplo, si a una aleación Al-12%Cu se añade sodio, la resistencia a la tracción del material moldeado aumenta de 4 a 7 kgf/mm2, y su alargamiento a rotura puede ser casi de el doble. Las principales ventajas de las aleaciones modificadas de AlSi son sus excelentes propiedades de moldeo y propiedades físicas, siendo mejores que las aleaciones AlZn o que la aleación con 8% de Cu. Como desventaja, son aleaciones difíciles de mecanizar debido a la naturaleza abrasiva de las partículas de Si. El hierro es prácticamente insoluble en estas aleaciones y aparece formando un compuesto ternario. Si el contenido en Fe es menor del 0.6%, dicho compuesto aparece como pequeñas agujas o placas en el eutèctico. En mayores proporciones, el aluminio se fragiliza empeorando en gran proporción las propiedades mecánicas.

Las aleaciones AlSi se utilizan preferentemente en las industrias de fundición, debido a su alta fluidez y su reducido coeficiente de expansión tèrmica. Las aleaciones AlSi para forja se utilizan para varillas de material de aportación para la soldadura.

La Distribución de Temperatura y el Ciclo Termico

La Distribución de Temperatura.

Representa las temperaturas existentes en un momento determinado, en varios puntos del metal que ha sido o está siendo soldado.

El Ciclo Térmico.

Representa como varía la temperatura a lo largo de todo el tiempo de un punto cualesquiera del metal durante la soldadura. El ciclo térmico representa por lo tanto la historia térmica de un punto cualquiera del metal y por ello, tiene una influencia notable en la micro estructura final de dicho metal y en sus propiedades mecánicas. Continuar leyendo “La Distribución de Temperatura y el Ciclo Termico”

Aleaciones de aluminio para forja – soldadura

Aleaciones de aluminio para forja

Las aleaciones de aluminio para uso comercial se especifican como productos forjados y materiales fundidos. Los productos forjados incluyen estampaciones, extrusiones, placa, chapa, banda, barra, alambre, tubo y lámina o papel, mientras que las aleaciones para colada pueden conseguirse en formas fundidas en arena, por gravedad y a presión. Las aleaciones pueden clasificarse en las que se pueden tratar térmicamente ocasionando un endurecimiento por precipitación y las que no. Las aleaciones de aluminio pueden ser forjadas en una gran variedad de formas y tipos de forjado . Continuar leyendo “Aleaciones de aluminio para forja – soldadura”

Aleaciones de aluminio – soldadura

Como se ha comentado con anterioridad, el aluminio es un metal con una baja resistencia mecánica. Por ejemplo, el límite elástico de un aluminio recocido puede alcanzar un valor de 10 MPa. Por tanto, uno de los objetivos a la hora de diseñar aleaciones de aluminio es mejorar su resistencia mecánica aleándolo con diferentes metales como el Cu, Mg, Mn, Zn, Fe o bien el Si. Continuar leyendo “Aleaciones de aluminio – soldadura”

Afilado electrodos de soldadura TIG

La punta del electrodo juega un papel importante sobre la estabilidad del arco y la penetración de la soldadura.

En corriente alterna, el extremo de un electrodo debe ser hemisférico; en el caso de que se forme una gota, es porque la densidad de corriente límite ha sido sobrepasada. Empleando tungsteno toriado, raramente se llega a obtener una forma hemisférica, y si la densidad de corriente es excesiva, el extremo se convierte en irregular. Continuar leyendo “Afilado electrodos de soldadura TIG”

Tratamientos térmicos por calefaccionado interno

Es el caso típico de Tratamiento Térmico de Esferas de Gas licuado aunque puede realizarse con mayor o menor dificultad en otros tipos de configuraciones.

Lo original de este método consiste en utilizar el mismo equipo como horno. Esto se logra revistiendo el equipo con dos capas de aislacion. La capa primera debe ser refractaria, se usa fibra cerámica ya que la misma debe resistir las altas temperaturas de la piel caliente del equipo (» 600 °C). La segunda capa puede ser un material aislante, menos refractario y menos costoso, por ejemplo Lana Mineral. Continuar leyendo “Tratamientos térmicos por calefaccionado interno”

Tratamientos térmicos de la soldadura – Metodos de tratamientos localizados

Ver AWS D10.10 “Recommended Practices for local Heating of Welds in piping and tubing”
Durante la fabricación en taller, las soldaduras son tratadas como vimos anteriormente, en horno. Si el tamaño excede las dimensiones del horno o no hay uno disponible, la Unión Soldada y el material base adyacente pueden ser calentados localmente por uno de los métodos descriptos a continuación.
Continuar leyendo “Tratamientos térmicos de la soldadura – Metodos de tratamientos localizados”

Técnicas de depuración para la purga – soldadura

Técnicas de Depuración

Una pregunta común acerca de purga es que caudal  que se debe usar. En realidad, el flujo depende en gran medida el volumen que va ser purgado.

En la práctica, el soldador debe esforzarse para suminstrar el flujo suficiente y asi forzar a que el oxígeno se elimine suavemente,mantener una presión ligeramente mayor en el interior que en el exterior de la cámara de purga. Esta acción evita que el oxígeno vuelva a entrar en la zona de purgado a través de la costura de soldadura durante el proceso y, al mismo tiempo, reduce al mínimo el exceso de turbulencias, que pueden causar inestabilidad en el arco de soldadura. Continuar leyendo “Técnicas de depuración para la purga – soldadura”

Corriente Alterna en la soldadura TIG

Como ya sabreis, hay varios tipos de polaridades en los procesos de soldadura, entre ellos la corriente alterna y la corriente continua.La corriente continua podemos clasificarla en corriente continua polaridad directa y polaridad inversa. hoy hablaremos sobre la corriente alterna que auna, aunque reducidas, las ventajas de las dos polaridades:

  • El buen comportamiento durante el semiciclo de polaridad directa (gran penetración).
  • El efecto decapante del baño durante el semiciclo de polaridad inversa.

Este tipo de corriente es muy utilizado para espesores reducidos, metales ligeros … los inconvenientes más importantes nos encontramos la dificultad para cebar el arco, y la estabilidad del mismo, lo que hace que la soldadura sea un poco más difícil que en la soldadura con corriente continua.Este metodo también obliga a tener un equipo en el que se encuentre un generador de alta frecuencia. Continuar leyendo “Corriente Alterna en la soldadura TIG”